翻訳と辞書
Words near each other
・ Quaternary International
・ Quaternary numeral system
・ Quaternary prevention
・ Quaternary Research
・ Quaternary science
・ Quaternary Science Reviews
・ Quaternary sector of the economy
・ Quaternary-amine-transporting ATPase
・ Quaternates
・ Quaternion
・ Quaternion (disambiguation)
・ Quaternion (poetry)
・ Quaternion algebra
・ Quaternion group
・ Quaternion Society
Quaternion-Kähler manifold
・ Quaternion-Kähler symmetric space
・ Quaternionic analysis
・ Quaternionic discrete series representation
・ Quaternionic matrix
・ Quaternionic projective space
・ Quaternionic representation
・ Quaternionic structure
・ Quaternionic vector space
・ Quaternions and spatial rotation
・ Quaternium
・ Quaternium-15
・ Quatford
・ Quathiaski Cove
・ Quathlambia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quaternion-Kähler manifold : ウィキペディア英語版
Quaternion-Kähler manifold
In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(''n'')·Sp(1). Although this definition ''includes'' hyperkähler manifolds, these are often excluded from the definition of a quaternion-Kähler manifold by imposing the condition that the scalar curvature is nonzero, or that the holonomy group is equal to Sp(''n'')·Sp(1).
The definition introduced by Edmond Bonan〔.〕 in 1965, uses a 3-dimensional subbundle ''H'' of End(T''M'') of endomorphisms of the tangent bundle to a Riemannian ''M'', that in 1976 Stefano Marchiafava and Giuliano Romani called ''I fibrato di Bonan''
. For ''M'' to be quaternion-Kähler, ''H'' should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions which act on T''M'' preserving the metric. Simultaneously, in 1965, Edmond Bonan and Vivian Yoh Kraines〔.〕 constructed the parallel 4-form. It was not until 1982 that Edmond Bonan proved an outstanding result : the analogue of hard Lefschetz theorem 〔
.
*
*
*
*
*.
*.
*.
* Edmond Bonan, ''Isomorphismes sur une variété presque hermitienne quaternionique'', Proc. of the Meeting on Quaternionique Structures in Math.and Physics SISSA , Trieste, (1994), 1-6.
〕 for compact Sp(''n'')·Sp(1)-manifold.
== Ricci curvature ==

Quaternion-Kähler manifolds appear in Berger's list of Riemannian holonomies as the only manifolds of special holonomy with
non-zero Ricci curvature. In fact, these manifolds are Einstein.If an Einstein constant of a quaternion-Kähler manifold is zero, it is hyperkähler. This case is often excluded from the definition. That is, quaternion-Kähler is defined as one with holonomy reduced to Sp(''n'')·Sp(1) and with non-zero Ricci curvature (which is constant).
Quaternion-Kähler manifolds divide naturally into those with positive and negative Ricci curvature.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quaternion-Kähler manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.